Influence of disturbance on carbon exchange in a permafrost collapse and adjacent burned forest
نویسندگان
چکیده
[1] We measured CO2 and CH4 exchange from the center of a Sphagnum-dominated permafrost collapse, through an aquatic moat, and into a recently burned black spruce forest on the Tanana River floodplain in interior Alaska. In the anomalously dry growing season of 2004, both the collapse and the surrounding burned area were net sinks for CO2, with a mean daytime net ecosystem exchange of 1.4 mmol CO2 m 2 s , while the moat was a CH4 source with a mean flux of 0.013 mmol CH4 m 2 s . Regression analyses identified temperature as the dominant factor affecting intragrowing season variation in CO2 exchange and soil moisture as the primary control influencing CH4 emissions. CH4 emissions during the wettest portion of the growing season were four times higher than during the driest periods. If temperatures continue to warm, peatland vegetation will likely expand with permafrost degradation, resulting in greater carbon accumulation and methane emissions for the landscape as a whole.
منابع مشابه
Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost
Changes in vegetation and soil properties following permafrost degradation and thermokarst development in peatlands may cause changes in net carbon storage. To better understand these dynamics, we established three sites in Alaska that vary in permafrost regime, including a black spruce peat plateau forest with stable permafrost, an internal collapse scar bog formed as a result of thermokarst, ...
متن کاملModeling thermal dynamics of active layer soils and near-surface permafrost using a fully coupled water and heat transport model
[1] Thawing and freezing processes are key components in permafrost dynamics, and these processes play an important role in regulating the hydrological and carbon cycles in the northern high latitudes. In the present study, we apply a well-developed soil thermal model that fully couples heat and water transport, to simulate the thawing and freezing processes at daily time steps across multiple ...
متن کاملEdaphic and microclimatic controls over permafrost response to fire in interior Alaska
Discontinuous permafrost in the North American boreal forest is strongly influenced by the effects of ecological succession on the accumulation of surface organic matter, making permafrost vulnerable to degradation resulting from fire disturbance. To assess factors affecting permafrost degradation after wildfire, we compared vegetation composition and soil properties between recently burned and...
متن کاملInteractive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests
We examined the effects of fire disturbance on permafrost degradation and thaw settlement across a series of wildfires (from ~1930 to 2010) in the forested areas of collapse-scar bog complexes in the Tanana Flats lowland of interior Alaska. Field measurements were combined with numerical modeling of soil thermal dynamics to assess the roles of fire severity and climate history in postfire perma...
متن کاملThe influence of vegetation and soil characteristics on active‐layer thickness of permafrost soils in boreal forest
Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics,...
متن کامل